Quick Start¶
Get up and running with AI Documentation Agent in under 5 minutes!
Prerequisites¶
Before you begin, ensure you have:
- ✅ Python 3.8 or higher
- ✅ Ollama installed and running
- ✅ Git (for cloning the repository)
Installation Steps¶
1. Clone the Repository¶
2. Install Dependencies¶
3. Configure Environment¶
The default configuration works for most users. Edit .env if you need custom settings.
4. Start Ollama¶
5. Pull an LLM Model¶
# Recommended for getting started (fast, good quality)
ollama pull llama2:7b
# Or choose an alternative:
# ollama pull mistral # Better quality
# ollama pull codellama # Best for code
Your First Documentation¶
Generate docs for the sample project:¶
This will:
- ✅ Analyze the example project
- ✅ Generate comprehensive documentation
- ✅ Save to
output/my_first_docs.md
Check the output:¶
# View the generated documentation
cat output/my_first_docs.md
# Or open in your editor
code output/my_first_docs.md
Generate Docs for Your Project¶
Now try it on your own project:
Quick Examples¶
Common Commands¶
# Quick documentation (fast)
python run.py --max-files 15 --iterations 2
# Standard documentation
python run.py --directory ~/my-project
# High-quality documentation
python run.py --directory ~/my-project --iterations 5 --model codellama
# Generate HTML or PDF
python run.py --format html
python run.py --format pdf
# Verbose output for debugging
python run.py --verbose
Understanding the Output¶
The generated documentation includes:
- Project Overview - High-level description and purpose
- Architecture - System design and component structure
- Key Components - Detailed module documentation
- Development Setup - Installation and configuration
- Deployment Guide - Build and hosting instructions
- File Documentation - Functions, classes, and methods
- Best Practices - Standards and recommendations
Quick Troubleshooting¶
No files found
Solution: Check the directory path:
API Timeout
Solution: Reduce the number of files or increase timeout:
Next Steps¶
✅ You're all set! Now learn more:
- Configuration - Customize the agent for your needs
- Installation Methods - Docker, standalone executables, etc.
- Complete Guide - Learn all features and advanced usage
- User Guide - Deep dive into capabilities
Tips for Best Results¶
Choose the Right Model
- Small projects →
llama2:7b(fast) - Medium projects →
mistral(balanced) - Large/complex →
codellama(best quality)
Adjust File Count
- Start with
--max-files 20for testing - Increase to 50-100 for comprehensive docs
- Too many files may cause timeouts
Iterative Refinement
- 2 iterations → Quick documentation
- 3 iterations → Standard quality (default)
- 5 iterations → Maximum quality
Command Reference¶
| Option | Description | Example |
|---|---|---|
--directory DIR |
Project to analyze | --directory ~/my-app |
--format FORMAT |
Output format | --format html |
--output FILE |
Output filename | --output my_docs |
--max-files N |
Max files to analyze | --max-files 50 |
--iterations N |
Refinement cycles | --iterations 5 |
--model MODEL |
LLM model | --model codellama |
--project-type TYPE |
Project type | --project-type backend |
--verbose |
Verbose logging | --verbose |
Support¶
Need help?
- 📖 Check the Complete Guide
- 🔧 Review Configuration Options
- 🐛 Enable verbose mode:
--verbose - 📝 Check logs:
ai_agent.log